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Abstract

In this paper, we present a new approach to high quality 3D object reconstruction. Start-
ing from a calibrated sequence of color images, the algorithm is able to reconstruct both
the 3D geometry and the texture. The core of the method is based on a deformable model,
which defines the framework where texture and silhouette information can be fused. This
is achieved by defining two external forces based on the images: a texture driven force and
a silhouette driven force. The texture force is computed in two steps: a multi-stereo corre-
lation voting approach and a gradient vector flow diffusion. Due to the high resolution of
the voting approach, a multi-grid version of the gradient vector flow has been developed.
Concerning the silhouette force, a new formulation of the silhouette constraint is derived.
It provides a robust way to integrate the silhouettes in the evolution algorithm. As a conse-
quence, we are able to recover the contour generators of the model at the end of the iteration
process. Finally, a texture map is computed from the original images for the reconstructed
3D model.

Key words: 3D reconstruction, deformable model, multigrid gradient vector flow, visual
hull, texture.

1 Introduction

As computer graphics and technology become more powerful, attention is being
focused on the creation or acquisition of high quality 3D models. As a result, a
great effort is being made to exploit the biggest source of 3D models: the real
world. Among all the possible techniques of 3D acquisition, there is one which
is especially attractive: the image-based modeling. In this kind of approach, the
only input data to the algorithm are a set of images, possibly calibrated. Its main
advantages are the low cost of the system and the possibility of immediate color.
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The main disadvantage is the quality of the reconstructions compared to the quality
of more active techniques (range scanning or encoded-light techniques). In this
paper we present an image-based modeling approach which affords high quality
reconstructions by mixing two complementary image data into a same framework:
silhouette information and texture information. Our two main contributions are a
new approach to the silhouette constraint definition and the high quality of the
overall system.

2 Related Work

Acquiring 3D models is not an easy task and abundant literature exists on this sub-
ject. There are three major approaches to the problem of 3D real model representa-
tion: pure image-based rendering techniques, hybrid image-based techniques, and
3D scanning techniques. Pure image-based rendering techniques as [1,2] try to gen-
erate synthetic views from a given set of original images. They do not estimate the
real 3D structure behind the images, they only interpolate the given set of images
to generate a synthetic view. Hybrid methods as [3–6] make a rough estimation of
the 3D geometry and mix it with a traditional image-based rendering algorithm in
order to obtain more accurate results. In both types of methods, the goal is to gen-
erate coherent views of the real scene, rather than obtain metric measures of it. In
opposition to these techniques, the third class of algorithms tries to recover the full
3D structure. Among the 3D scanning techniques, two main groups are to be distin-
guished: active methods and passive ones. Active methods use a controlled source
of light such as a laser or a coded light in order to recover the 3D information [7–9].
Passive methods use only the information contained in the images of the scene [10].
They can be classified according to the type of information they use. A first class
consists of the shape from silhouette methods [11–16]. They obtain an initial esti-
mation of the 3D model known as visual hull. They are robust and fast, but because
of the type of information used, they are limited to simple shaped objects. We can
find commercial products based on this technique. Another approach includes the
shape from shading methods. They are based on the diffusing properties of Lam-
bertian surfaces. They mainly work for 2.5D surfaces and are very dependent on the
light conditions. A third class of methods use the color information of the scene.
The color information can be used in different ways, depending on the type of scene
we try to reconstruct. A first way is to measure color consistency to carve a voxel
volume [17,18]. But they only provide an output model composed of a set of vox-
els, which makes it difficult to obtain a good 3D mesh representation. In order to
solve this problem, the authors of [19] and [20] propose to use the color consistency
measure to guide a deformable model. An additional problem of color consistency
algorithms is that they compare absolute color values, which makes them sensitive
to light condition variations. A different way of exploiting color is to compare local
variations of the texture, as done in cross-correlation methods [21,22]. As a spe-
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cialization of the color-based group, there are specific methods that try to use at
the same time another type of information such as silhouettes [17,23,24], radiance
[25] or shading [26]. Although very good results are obtained, the quality is still
limited, and the main problem is the way the fusion of different data is done. Some
authors, such as [17,23], use a volume grid for the fusion. Others, like [26,25,24],
use a deformation model framework. The algorithm we present in this paper can be
classified in this latter group. We perform the fusion of both silhouettes and texture
information by a deformation model evolution. The main difference with the meth-
ods mentioned above is the way the fusion is accomplished, which enables us to
obtain very high quality reconstructions. A similar approach to our work has been
recently proposed in [27]. A deformable model is also used to fusion texture and
silhouette information. However, the objectives of their work are not the same as
ours. They are interested in dynamic 3D shape reconstruction of moving persons
while our specific aim is high quality 3D and color reconstructions of museological
objects.

3 Algorithm Overview

The goal of the system is to be able to reconstruct a 3D object from a sequence
of geometrically calibrated images. To do so, we dispose of several types of infor-
mation contained in the images. Among all the information available, shading, sil-
houettes and features of the object are the most useful for shape retrieval. Shading
information needs a calibration of the light sources, which implies an even more
controlled environment for the acquisition. The use of the silhouettes requires a
good extraction of the object from the background, which is not always easy to
accomplish. Finally, of all the features available from an object, such as texture,
points, contours, or more complicated forms, we are mainly interested in texture,
whenever it exists. Since exploiting shading imposes heavy constraints in the ac-
quisition process, the information we will use consists of silhouettes and texture.
The next step is to decide how to mix these two types of information to work to-
gether. As we will see, this is not an easy task because those types of information
are very different, almost ”orthogonal”.

3.1 Classical Snake vs. Level-Set Methods

Deformation models offer a well-known framework to optimize a surface under
several kinds of information. Two different related techniques can be used depend-
ing on the way the problem is posed: a classical snake approach [28] or a level-set
approach [29]. The main advantage of the snake approach is its simplicity of im-
plementation and parameter tuning. Its main drawback is the constant topology
constraint. Level-set based algorithms have the advantage of an intrinsic capabil-
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ity to overcome this problem but its main disadvantages are the computation time
and the difficulty in controlling the topology. Computation time can be addressed
using a narrow band implementation [30]. Controlling the topology is a more dif-
ficult problem but, the authors of [31] have recently proposed an interesting way
of avoiding topology changes in level set methods. Despite these improvements,
level-set methods remain complex and expensive when dealing with high resolu-
tion deformable models (9 to 11 grid levels). Since this is our principal objective,
we have chosen to use the classical snake as framework for the fusion of silhouette
and stereo data. This implies that the topology has to be completely recovered be-
fore the snake evolution occurs as discussed in Section 4. Since the proposed way
to recover the right topology is the visual hull concept, the topology recovery will
depend on the intrinsic limitations of the visual hull. This implies that there ex-
ist objects for which we are unable to recover the correct topology (no silhouettes
seeing a hole) that could be potentially reconstructed using a level-set method (the
correct topology being recovered with the stereo information). We observe that, in
practice, if we dispose of enough views, the visual hull provides the correct topol-
ogy for most of the common objects; therefore, this is not a severe handicap.

3.2 The Classical Snake Approach

The deformable model framework allows us to define an optimal surface which
minimizes a global energy E . In general, this energy will be non-convex with pos-
sible local minima. In our case, the minimization problem is posed as follows: find
the surface S of R

3 that minimizes the energy E (S) defined as follows:

E (S) = Etex(S)+Esil(S)+Eint(S), (1)

where Etex is the energy term related to the texture of the object, Esil the term related
to the silhouettes and Eint is a regularization term of the surface model. Minimizing
Eq. (1) means finding Sopt such that:

∇E (Sopt)=∇E tex(Sopt)+∇E sil(Sopt)+∇E int(Sopt)= 0,

= Ftex(Sopt) + Fsil(Sopt) + Fint(Sopt) = 0,
(2)

where ∇ is the gradient operator, and Ftex, Fsil and Fint represent the forces that
drive the snake. Equation (2) establishes the equilibrium condition for an optimal
solution, where the three forces cancel each other out. A solution to Eq. (2) can be
found by introducing a time variable t for the surface S and solving the following
differential equation:

St = Ftex(S)+Fsil(S)+Fint(S). (3)
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The discrete version becomes:

Sk+1 = Sk +∆t(Ftex(Sk)+Fsil(Sk)+Fint(Sk)). (4)

Once we have sketched the energies that will drive the process, we need to make a
choice for the representation of the surface S. This representation defines the way
the deformation of the snake is done at each iteration. Among all the possible sur-
face representations, we have chosen the triangular mesh because of its simplicity
and well known properties.

To completely define the deformation framework, we need an initial value of S, i.e.,
an initial surface S0 that will evolve under the different energies until convergence.

In this paper, we describe the snake initialization in Section 4, the force driven by
the texture of the object in Section 5, the force driven by the silhouettes in Section 6,
how we control the mesh evolution in Section 7 and the texture mapping procedure
in Section 8. We finally discuss our results in Section 9.

4 Snake Initialization

The first step in our minimization problem is to find an initial surface close enough
to the object surface in order to guarantee a good convergence of the algorithm.
Close has to be considered in a geometrical and topological sense. The geometric
distance between the initial and the object surfaces has to be reduced in order to
limit the number of iterations in the surface mesh evolution process and thereby the
computation time. The topology of the initial surface is also very important since
classical deformable models maintain the topology of the mesh during its evolu-
tion. On the one hand, this imposes a strong constraint that makes the initialization
a very important step since the initial surface must capture the topology of the ob-
ject surface. On the other hand, the topology-constant property of a classical snake
provides more robustness to the evolution process.

If we make a list of possible initializations, we can establish an ordered list, where
the first and simplest initialization is the bounding box of the object. The next sim-
plest surface is the convex hull of the object. Both the bounding box and the convex
hull are unable to represent surfaces with a genus greater than 0. A more refined
initialization, which lies between the convex hull and the real object surface is the
visual hull [32]. The visual hull can be defined as the intersection of all the possi-
ble cones containing the object. In practice, a discrete version is usually obtained
by intersecting the cones generated by back projecting the object silhouettes of a
given set of views. As a difference with the convex hull, it can represent surfaces
with an arbitrary number of holes. However, this does not imply that it is able to
completely recover the topology of the object and, what is even worse, the topology
of the visual hull depends on the discretization of the views (see Fig. 1).
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Fig. 1. Different topological problems. Left: example of a topology that cannot be cap-
tured by the visual hull concept. Middle: example of topological problem arising with a
finite number of cameras. The first camera is able to recover the right topology whereas
the second camera is not. Right: bad topology caused by the resolution of the visual hull
construction algorithm. We show an original silhouette superposed to the visual hull mesh.

Computing the visual hull from a sequence of images is a very well known problem
of computer vision and computer graphics [12,14,4]. Different approaches exist,
depending on the type of output, way of representation and fidelity to the theoret-
ical visual hull. In our case, we are interested in methods producing good quality
meshes (manifold, smooth, triangles with an aspect ratio close to 1, defined as the
ratio of the circumradius of the triangle to twice its inradius), even if the fidelity is
not very high. In addition to a good quality mesh, another primary requirement is
to obtain the right topology. Volume carving methods are a good choice because of
the high quality output meshes that we can obtain through a marching cube [33] or
marching tetrahedron algorithm. The degree of precision is fixed by the resolution
of the volume grid, which can be adapted according to the required output resolu-
tion. But this adaptability can also generate additional problems of topology: if the
resolution of the grid is low compared to the size of the visual hull structures, the
aliasing produced by the sub-sampling may produce topological artifacts that the
theoretic visual hull does not have. To sum up, three different sources of deviation
may arise between the real object topology and the computed visual hull topology:

• Errors due to the nature of the visual hull (see Fig. 1 left). Real objects may
have holes that cannot be seen as a silhouette hole from any point of view. The
visual hull will then fail to represent the correct topology for this kind of object.

• Errors due to the use of a finite number of views (see Fig. 1 middle). They can
be solved by having the adequate points of view that allow recovering the right
topology of the real object.

• Errors due to the implementation algorithm (see Fig. 1 right). They are caused
by the numerical precision or the subsampling of the silhouettes. They can be
avoided by increasing the precision of the algorithm or by filtering the silhou-
ettes.

In practice, we use an octree-based carving method followed by a marching tetrahe-
dron meshing algorithm and a mesh simplification. In order to initialize the octree,
an initial bounding box can be analytically computed from the 2D silhouette bound-
ing boxes. The 3D back projection of n 2D bounding boxes defines a 3D convex
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Fig. 2. Epipolar geometry.

hull formed by 4n half planes. The bounding box of the convex hull can be ana-
lytically computed by a simplex optimization method for each of the 6 variables
defining the bounding box.

5 Texture Driven Force

In this section we further develop the texture force Ftex appearing in Eq. (2). This
force contributes to recovering the 3D object shape by exploiting the texture of the
object. We want this force to maximize the image coherence of all the cameras that
see the same part of the object. It is based on the following projective geometry
property: if two cameras see the same surface, then the two images are related by
a geometric transformation that depends only on the 3D geometry of the object.
This property is only fully valid under the common hypothesis of perfect projec-
tive cameras, perfect Lambertian surface and same lighting conditions. Different
approaches exist to measure the coherence of a set of images, but they can be clas-
sified into two main groups whether they make a punctual radiometric comparison
(e.g. photo-consistency measures as in voxel coloring [18]) or a spatial comparison
of relative radiometric distributions (e.g. cross-correlation measures). We have cho-
sen the normalized cross-correlation because of its simplicity and robustness in the
presence of highlights and changes of the lighting conditions. Using the example
of Fig. 2, the normalized cross-correlation C(p1,p2) between pixels p1 and p2 is
defined as follows:

C(p1,p2) = n1 ·n2, n j =
I j(N(p j))− I j(N(p j))

||I j(N(p j))− I j(N(p j))||
, j = 1,2, (5)

where N(p j) is a neighborhood around p j in image I j, and I j(N(p j)) is the vector
of the image values in this neighborhood. This measure compares the intensity
distributions inside the two neighborhoods. It is invariant to changes of the mean
intensity value and of the dynamic range inside the neighborhoods.

Once we have a criterion to measure the image coherence, we can now recover the
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3D geometry by maximizing the criterion for a given set of views. Two different
types of approaches for this optimization have been proposed in the literature. In
the first type, the texture similarity is computed using the current shape estima-
tion. It permits explicitly computing visibility and using it in the texture similarity
computation. If the measure is improved by deforming the model locally, then the
model is updated and the process iterated as in [26,24,27]. Level-set based methods
as in [21,22] explore a volumetric band around the current model but they still re-
main locally dependent on the current model shape. Since the exploration does not
test all the possible configurations, the algorithm can fail because of local maxima
of the texture coherence criterion. Besides, computing visibility with the current
model does not always imply having a more accurate texture criterion. If the cur-
rent model is far away from the real shape, the visibility can be wrong and so can
the texture criterion. However, if the current model is close to the real shape, taking
visibility into account can improve the final result. The second type of approaches
refers to the use of a model-independent texture criterion to test all the possible
configurations. In order to improve even more the robustness, we can accumulate
the criterion values into a 3D grid by using a voting approach as in [17,34]. Since
our initialization (visual hull) can be far away from the real surface, we believe
that model-dependent criteria may have local minima problems. For this reason,
we prefer to use a model-independent voting approach. Voting favors robustness in
the presence of highlights and passing from the image information to a more usable
information of the sort “probability of finding a surface” [35].

5.1 Proposed Voting Approach

In this section we first state the geometric relations between images. Then we
present how this relation is used to optimize the texture coherence, and finally we
detail our complete voting approach.

We first define the projective geometry relation between any 3D point P and its
projections p1 and p2 in the two images I1 and I2(see Fig. 2). Let P(δ ) be the optic
ray generated by the optical center O1 and the direction d defined by a pixel p1 of
I1 as follows:

P(δ ) = O1 +δd, δ ∈ [0,∞). (6)
Let P2 be the projection matrix of the second camera, the projection of the optic
ray into I2 can be computed as:

p2(δ ) ∼ P2P(δ ). (7)

Let d∞ and e21 be the projections in I2 of the infinity point P(δ → ∞) and the origin
O1 of the optic ray respectively:

e21 ∼ P2O1, d∞ ∼ P2P(δ → ∞). (8)
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We have then the following relations:
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For a given 3D depth δ , its relationship with the 2D distance between the epipole
e21 and p2(δ ) can be obtained as follows:

||p2(δ )− e21|| =
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and after simplification:

||p2(δ )− e21|| =
δ

ez
21 +δdz

∞

√

a2 +b2, (11)

where
a = dx

∞ −dz
∞ex

21/ez
21,

b = dy
∞ −dz

∞ey
21/ez

21.
(12)

This simple formula allows the passage from the 2D pixel distance ||p2(δ )− e21||
to the 3D metric depth δ . It applies also for any other view I j seeing the same optic
ray, and links together all the corresponding 2D distances ||p j(δ )− e j1||.

Let us consider our problem of 3D recovery from texture. We want to optimize, for
a given pixel in one image, the texture coherence with the other images. An optic
ray can be defined by the pixel, and we search for the 3D point P belonging to the
optic ray that maximizes the normalized cross-correlation with the other images.
This can be done by sampling the projection of the optic ray in every image. In
practice, the knowledge of the visual hull, which is an upper-bound of the object,
allows us to accelerate computations. For a given pixel, the 3D depth to scan is
fixed by the intersection of its optic ray with the visual hull. This intersection gives
a depth interval in which we know that the object is contained. According to Eq.
(11), this depth interval can be translated into pixel intervals for the correlation
computation.

Equation (11) enables multi-correlation algorithms to stay in the pixel space for
all the computations. For a same pixel, individual correlations are computed with
the different images and merged into a unique reference system. Using several cor-
relation curves for a same pixel allows us to make a more robust decision. The
criterion used to find the best candidate depth δ along the optic ray is based on the
correlation values but also on the coherence between the correlation curves. In our
implementation, the correlation for a given pixel is computed with a fixed number
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of cameras as in [36]. For typical sequences of 36 images, a good compromise be-
tween computation time, accuracy and robustness is obtained by using the 4 nearest
cameras (± 10 deg and ± 20 deg). This configuration is also used in [17], and can
resist up to 2 bad correlation curves due to highlights, occlusions or non-coherent
textures occurring in the corresponding images.

A question arises concerning the extraction of the maximum of texture coherence
from a sequence of images. A first simple answer is to estimate a 3D point on the
surface for every pixel in every image:

pseudo code of the greedy algorithm

1 For each image in imageList

2 For each pixel in image

3 Compute the depth interval from the visual hull

4 Compute the correlation curves

5 Transform all the curves into the same coordinate system

6 Find the best candidate depth

7 If correlation value < threshold continue with next pixel

8 Compute the 3D position P of the candidate depth

9 Add the correlation value to the voxel grid containing P

The problem with this algorithm is the computation time. For large images (2000
x 3000), the computation time can reach 16 hours on a fast machine. This time can
be strongly reduced with almost no loss because of the redundancy of the compu-
tation. The redundancy can be classified into two main groups: redundancy inside
an image and redundancy between different images.

The redundancy between images is caused by the fact that several images see at
the same time the same piece of surface. If we have already computed a surface
estimation using one image, we can back project the 3D points into the next image,
giving an initial estimation of the distance to the surface. The problem is that if
the previous image did not correlate well, errors may propagate and prevent the
following images from attenuating it.

The redundancy inside an image can be exploited using a previous knowledge of
the content of the image. In our case, it is a picture of an object and we can expect
it to be locally continuous. This implies that, if the surface is correctly seen and if
there is no occlusion, the depth values for neighboring pixels should not be very
different. This can be exploited in order to reduce the depth interval for the cor-
relation criterion. In the greedy algorithm, for each pixel, we test the entire depth
interval defined by the visual hull without taking into account if its neighbors have
already found a coherent surface. To be able to benefit from already computed cor-
relations, the image can be partitioned into different resolution layers as shown in
Fig. 3.
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Fig. 3. Example of an im-
age partition into 3 differ-
ent resolution layers.

The greedy algorithm is first run on the lowest resolu-
tion layer (black pixels in Fig. 3), with the depth inter-
vals defined by the visual hull. For consecutive layers,
the depth intervals are computed using the results of
the precedent layer. To estimate the depth interval of
a pixel based on the results of the previous layer, a
record of the correlation values is maintained in order
to control the reliability of the estimation. The theoreti-
cal maximum improvement that we can reach with this
method in the case of 3 layers as illustrated in Fig. 3 is
16 times faster than the greedy method. This case corresponds to a black layer com-
putation time much higher than the grey and white ones. In practice, the improve-
ment is around 5 or 6 times faster for well-textured images. The worst case cor-
responds to non textured images where correlations become unreliable. The depth
interval estimation fails, necessitating the use of the greedy method.

Besides the improvement in computation time, an easy improvement in storage
space is to substitute the 3D volume grid by a more compact octree structure. The
result of the correlation step will be a 3D octree containing the accumulated hits of
all the pixel estimations. The new algorithm can be coded as:

pseudo code of the redundancy-based algorithm

1 For each image in imageList

2 For each layer in image

3 For each pixel in layer

4 If layer = first layer

5 Compute the depth interval from the visual hull

6 Else

7 Compute the depth interval from the previous layer

8 Compute the correlation curves

9 Transform all the curves into the same coordinate system

10 Find the best candidate depth

11 If correlation value < threshold continue with next pixel

12 Compute the 3D position P of the candidate depth

13 Add the correlation value to the octree voxel containing P

This volume by itself cannot be used as a force to drive the snake. A possible force
could be the gradient of the correlation volume. The objection is that it is a very
local force defined only in the vicinity of the object surface. The proposed solution
to this problem is to use a gradient vector flow (GVF) field to drive the snake.

5.2 Octree-based Gradient Vector Flow

The GVF field was introduced by [37] as a way to overcome a difficult problem of
traditional external forces: the capture range of the force. This problem is caused
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by the local definition of the force, and the absence of an information propagation
mechanism. To eliminate this drawback, and for all the forces derived from the gra-
dient of a scalar field, they proposed to generate a vector field force that propagates
the gradient information. The GVF of a scalar field f (x,y,z) : R

3 7→ R is defined
as the vector field F = [u(x,y,z),v(x,y,z),w(x,y,z)] : R

3 7→ R
3 that minimizes the

following energy functional EGV F :

EGV F =
∫

µ||∇F||2 + ||F−∇ f ||2||∇ f ||2, (13)

where µ is the weight of the regularization term and ∇F = [∇u,∇v,∇w]. The solu-
tion to this minimization problem has to satisfy the Euler equation:

µ∇2F− (F−∇ f )||∇ f ||2 = 0, (14)

where ∇2F = [∇2u,∇2v,∇2w] and ∇2 is the Laplacian operator. A numerical so-
lution can be found by introducing a time variable t and solving the following
differential equation:

Ft = µ∇2F− (F−∇ f )||∇ f ||2. (15)

The GVF can be seen as the original gradient smoothed by the action of a Laplacian
operator. This smoothing action allows eliminating strong variations of the gradient
and, at the same time, propagating it. The degree of smoothing/propagation is con-
trolled by µ . If µ is zero, the GVF will be the original gradient, if µ is very large,
the GVF will be a constant field whose components are the mean of the gradient
components.

Since our data have been stored in an octree structure, the GVF has to be computed
on a multi-resolution grid. For this, we need to be able to:

• define the gradient operator and the Laplacian operator in the octree grid;
• define how to interpolate between voxels with different sizes.

In three dimensions, the gradient and Laplacian operators are defined as:

∇ f = [ fx, fy, fz], ∇2 f = fxx + fyy + fzz. (16)

In the case of a regular grid with a spacing of [∆x,∆y,∆z], the first and second
derivatives can be approached by central finite differences:

fx ≈ f (x+∆x,y,z)− f (x−∆x,y,z)
2∆x ,

fxx ≈ f (x+∆x,y,z)−2 f (x,y,z)+ f (x−∆x,y,z)
∆x2 .

(17)

If the grid is not regular, then the finite differences will not be centered. An easy way
to find the equivalent formulas for a non-regular grid is to estimate the parabolic
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curve ax2 +bx+c that passes through 3 points (Fig. 4), and compute the derivatives
of the estimated curve [38]. After solving the equation system, we find:

f(x+  )∆
f(x−  )δ

f(x)

δ ∆

f(x)=ax  +bx+c2

Fig. 4. Parabolic curve passing
through 3 points.

fx ≈ 1
(δ+∆)

(

f (x+∆)− f (x)
∆/δ − f (x−δ )− f (x)

δ/∆

)

= 2ax+b,

fxx ≈ 2
(δ+∆)

(

f (x+∆)− f (x)
∆ + f (x−δ )− f (x)

δ

)

= 2a.

(18)

As far as the interpolation is concerned, and to simplify the computation, we have
to add a constraint to the topology of the multi-resolution grid: the difference of
resolution in the neighborhood of a voxel, including the voxel itself, cannot be
greater than one level. This is not a strong constraint since the resolution of the
octree needs to change slowly if we want good numerical results in the computation
of the GVF.

There exist three different scenarios in the multi-resolution numerical algorithm.
The first one is when the current voxel and all its neighbors are the same size (see
Fig. 5(a)). In this case, computations are done as with a mono-resolution grid. The
second one is when the current voxel is bigger than or equal to its neighbors (see
Fig. 5(b)). For those voxels with the same size, computations are carried out in an
ordinary way. For those which are smaller, a mean value is simply used to get the
correct value in the scale of the current voxel:

fx(A) ≈ f (EFGH)− f (D)

2δ
, fy(A) ≈ f (B)− f (C)

2δ
. (19)

The third case corresponds to the current voxel being smaller than or equal to its
neighbors (see Fig. 5(c) and (d)). We illustrate two different configurations, and in
both we want to compute the gradient at the point A. In Fig. 5(c) we need the value
of the function f at the points E, F , BC and CD:

δ

D

C

A

B

E

δ

D

C

A

B

GH

E F

B CBC

A CD

D
E

F

δ

B
C

D

CD

δ

DE

H

G

A

E

F

BCD

DEF

(a) (b) (c) (d)

Fig. 5. Value interpolations (2D example): (a) Mono-grid case. (b) The current voxel is
bigger that its neighbors. (c),(d) The current voxel is smaller than its neighbors.
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fx(A) ≈ 1
(δ+1.5δ )

(

f (CD)− f (A)
1.5 − f (F)− f (A)

1/1.5

)

,

fy(A) ≈ 1
(δ+1.5δ )

(

f (BC)− f (A)
1.5 − f (E)− f (A)

1/1.5

)

.
(20)

In the example shown in Fig. 5(d) the values BCD and DEF are obtained by inter-
polating B with CD, and DE with F , respectively. If we translate these examples
into 3D, we have an additional interpolation along the new dimension for the points
BC and CD in Fig. 5(c), and BCD and DEF in Fig. 5(d).
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Fig. 6. mono grid vs. octree grid GVF.

In Fig. 6 we compare the result of a 3D
GVF computation for µ = 0.1 using a
regular grid and the octree approach.
The scalar field f used in the example
is defined as:

f (x,y,z) =







1 for z ∈ [34,36]

0 else
.

We can appreciate the accuracy of the multi-grid computation compared to the
mono-grid one. We can hardly see any difference between both curves, only when
the octree resolution becomes very low (voxels 20 and 50). Mean values of compu-
tation speed up for 10 levels of resolution are between 2 and 3 times as fast as the
mono-grid version while storage space is reduced between 10 and 15 times.

6 Silhouette Driven Force

The silhouette force is defined as a force that makes the snake match the original
silhouettes of the sequence. If it is the only force of the snake, the model should
converge towards the visual hull. Since we are only interested in respecting silhou-
ettes, the force will depend on the self occlusion of the snake. If there is a part of
the snake that already matches a particular silhouette, the rest of the snake is not
concerned by that silhouette, since the silhouette is already matched. If we com-
pare a visual hull and the real object, we see that the entire real object matches
the silhouettes, but not all the points of the object. The object concavities do not
obey any silhouette because they are occluded by a part of the object that already
matches the silhouettes. The main problem is how to distinguish between points
that have to obey the silhouettes (contour generators) and those that do not have
to. To solve this problem, the silhouette force can be decomposed into two differ-
ent components: a component that measures the silhouette fitting, and a component
that measures how strongly the silhouette force should be applied. The first com-
ponent is defined as a distance to the visual hull. For a 3D vertex v on the mesh of
the snake, this component can be implemented by computing the smallest signed
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distance dV H between the silhouette contours and the projection of the point into
the corresponding silhouette:

dV H(v) = min
i

d(Si,Piv). (21)

A positive distance means that the projection is inside the silhouette and a negative
distance that the projection is outside the silhouette. Using only this force would
make the snake converge towards the visual hull.

The second component measures the occlusion degree of a point of the snake for a
given view point c. The view point is chosen as the camera that defines the distance
to the visual hull:

α(v) =







1 for dV H(v) ≤ 0
1

(1+d(Ssnake
c ,Pcv))n for dV H(v) > 0

,

c(v) = argmini d(Si,Piv).

(22)

In the definition of α , there are two cases. If dV H is negative, it means that the point
is outside the visual hull. In that case, the force is always the maximum force. For
a point inside the visual hull, c is the camera that actually defines its distance to the
visual hull dV H . Ssnake

c is the silhouette created by the projection of the snake into
the camera c. The power n controls the decreasing ratio of α . This function gives
the maximum silhouette force to the points that belong to the contour generators.
All the other points, which are considered as concavities, are weighted inversely to
their corresponding snake silhouette distance d(Ssnake

c ,Pcv). This allows the points
of the snake to detach themselves from the visual hull. A big value of n allows an
easier detachment. But in that case the force becomes too local and does not allow
smooth transitions between concavities and contours. The value used in practice is
n = 2, which is a compromise between smoothness and concavity recovery.

The final silhouette force for a given point of the snake is a vector directed along
the normal to the snake surface N(v) and its magnitude is the product of both com-
ponents:

Fsil(v) = α(v)dV H(v)N(v) (23)

The silhouette force definition we give here is somewhat similar to the silhouette
force defined in [27]. The main difference with our formulation is their binary def-
inition of the α(v) function. They only apply the silhouette force to the contour
generator vertices, i.e., vertices where α(v) = 1. This hinders smooth transitions be-
tween contour generators and concavities. Whereas in our case, we allow a smooth
transition between concavities and contour generators (α values range from 0 to 1).
The size of the transition region is controlled by the exponent n in Eq. (22). Smooth
transitions allow us to better deal with incoherences between silhouettes and stereo.
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7 Mesh Control

Having defined the texture and silhouette forces Ftex and Fsil , i.e. the external
forces, the last force to detail is the internal force Fint . The goal of the internal force
is to regularize the effect of the external forces. We define the internal regularization
as the Laplacian operator, i.e., a force that tries to move a given mesh point v to the
gravity center of its 1-ring neighborhood:

Fint(v) =
1
m ∑

j∈N1(v)

v j −v, (24)

where v j are the neighbors of v and m is the total number of these neighbors (va-
lence). If the only force of the snake is the internal force, the mesh will collapse
under the action of the barycentric filtering.

Since the texture force Ftex can sometimes be orthogonal to the surface of the
snake, we do not use the force Ftex itself but its projection F N

tex onto the surface
normal:

F
N
tex(v) = (Ftex(v) ·N(v))N(v). (25)

This avoids problems of coherence in the force of neighbor points and helps the
internal force to keep a well-shaped surface.

The snake evolution process (Eq. (4)) at the kth iteration can then be written as the
evolution of all the points of the mesh vi:

vk+1
i = vk

i +∆t(F N
tex(v

k
i )+βFsil(vk

i )+ γFint(vk
i )), (26)

where ∆t is the time step and β and γ are the weights of the silhouette force and
the regularization term relative to the texture force. Equation (26) is iterated until
convergence of all the points of the mesh is achieved. The time step ∆t has to be
chosen as a compromise between the stability of the process and the convergence
time. An additional step of remeshing is done at the end of each iteration in order
to maintain a minimum and a maximum distance between neighbor points of the
mesh. This is obtained by a controlled decimation and refinement of the mesh. The
decimation is based on the edge collapse operator and the refinement is based on
the

√
3-subdivision scheme [39].

8 Texture Mapping

Once the 3D snake has converged, we can map the original set of color images
into the 3D object surface to create a texture map. The method used to create the
texture map is a particle-based approach such as the one described in [40,41]. This
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approach has been extended to filter the highlights that may be present in the im-
ages. For each vertex of the mesh, we compute the two cameras that best see it
without occlusion and without highlights. For a given triangle Vi=0,1,2, we dispose
of a total of three (possibly distinct) pairs of cameras that best see that triangle, one
pair of cameras per vertex. Then the triangle is divided into a number of particles

V

V

p(s,t)

V s
t

1

2

0

n(s,t)

Fig. 7. Color particle.

(see Fig. 7), and for each particle and for each pair of
cameras we interpolate the particle color as in [40].
This gives us three colors per particle rgbi=0,1,2. The
final particle color is obtained by bilinear interpolation
using the local parameterization (s, t) of the particle in-
side the triangle: rgb = (1− s− t) · rgb0 + s · rgb1 + t ·
rgb2. This allows us to filter highlights while preserving
the continuity of the texture between adjacent triangles.

9 Results

In this section we present a few results obtained with the proposed approach. All
the reconstructions presented in this paper are obtained from a single axis rotation
sequence of 36 images, using a fixed camera and a turntable where the object is
posed. Intrinsic and extrinsic calibration parameters are recovered using the method
described in [42]. The image resolution is 2008x3040 pixels for all the objects
except for those of Fig. 18, where the image resolution is 4000x4000 pixels. The
values of β and γ change very little from one object to another. Because the snake
iteration is always done in the voxel coordinate system of the GVF octree, the
value of β only depends on the ratio between the images size and the octree size. A
typical value is between 0.1 and 0.2. Typical values of γ are between 0.1 and 0.25,
depending on the required smoothness.

Computation times are dominated by the correlation voting step: a typical computa-
tion time for 36 images of 6 Mpixels is of 3 hours on a Pentium4 1.4GHz machine.

In Fig. 8 we present the complete reconstruction steps of the Twins model. We
can appreciate the differences between the visual hull initialization (Fig. 8 left)
and the final reconstruction (Fig. 8 middle). In Fig. 8 right we show the total force
on each vertex after convergence. The jeopardized pattern observed on the force
sign (red for positive sign, blue for negative sign) visually indicates convergence.
Figure 9 illustrates the influence of the silhouette force. The support of the object
does not provide any texture information and cannot be reconstructed using only the
texture force (Fig. 9 left). Adding the silhouette constraint solves this problem and
guarantees the convergence towards the visual hull in this region (Fig. 9 middle).
As shown in Fig. 9 right, the support is completely driven by the silhouette force.

In Fig. 10 we illustrate the different forces used in the deformable model. Ten octree
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Fig. 8. Different steps in the reconstruction process of the Twins object. Top: some of the
original images. Bottom: from left to right, visual hull initialization, final model, texture
mapping and total force after convergence. The reconstructed model has 83241 vertices.

Fig. 9. Twins model detail after convergence. Left: evolution under texture force only. Parts
of the object with no texture disappear. Middle: evolution under both the texture force and
the silhouette force. The parts of the object with no texture follow the silhouette force
(visual hull). Right: α component of the silhouette force after convergence.

levels are used in the voting approach (top left), which provides a high precision in
the gradient vector flow computation (top middle and top right). At the end of the
iterative process, a steady-state for the entire mesh is achieved, and concavities are
automatically detected (bottom right).

A complete reconstruction is presented in Fig. 11 using both silhouette and texture
information. We are able to recover many details with high accuracy (observe, for
instance, the quality of reconstruction of the bracelet and of the rope).

In Fig. 12 we present a comparison between a laser acquisition method (top left)
and the proposed method (top middle). We have less resolution in our reconstructed
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Fig. 10. External forces used in the reconstruction of the African model. Top left: volume
rendering of the correlation voting volume. Top middle: the octree partition used in the
computation of the gradient vector flow field. Top right: norm of the gradient vector flow
field. Bottom left: detail of the octree partition and the gradient vector flow volume. Bottom
middle: dV H silhouette component after convergence. Bottom right: α component of the
silhouette force after convergence.

model due to the stereo limitation and the regularization term. However, the mesh
quality is quite good and the main object concavities are well recovered too. In
addition, we provide a high quality texture map (top right).

In Fig. 13 and Fig. 14 we present two cases where the lack of good image correla-
tions is handled differently by the proposed approach. In Fig. 13 left we can clearly
distinguish the textured materials from the dark and bright non-textured material.
The latter produces bad correlation results (Fig. 13 middle). The final model will
converge to the textured surface whenever it exists and to the visual hull every-
where else (Fig. 13 right), producing some surface reconstruction errors in this
area. In Fig. 14 the problem does not lie in the existence of texture but in the pres-
ence of highlights on the object surface. The difference with the previous case is
that even if for a given camera the correlation does not work, the same surface is
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Fig. 11. African model after convergence (57639 vertices). Top left: Gouraud shading. Top
middle: same view with texture mapping. Top right: lateral view of the textured model.
Bottom left: detail of the textured model. Bottom right: same detail in wireframe.

seen without highlights by some other cameras. This allows the voting approach
to overcome the local failure of the correlation criterion and to recover the right
surface (see Fig. 8).

Other examples are shown in Fig. 15 and Fig. 16. We can appreciate the quality of
the tunic folds reconstruction in the Hygia model (Fig. 15). We observe in Fig. 15
right how the final surface minimizes the GVF force. It shows that the method is
powerful even for the reconstruction of small concavities.

In Fig. 17 we present a reconstruction of the same Twins object than in Fig. 8 but
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Fig. 12. Comparison between the proposed passive method and a laser active method. Top
left: laser model of 385355 vertices obtained with a Minolta VIVID 910 3D scanner. Top
middle: proposed method after snake convergence (233262 vertices). Top right: textured
mesh after convergence. Bottom left: mouth detail of the laser model. Bottom right: same
detail of the snake model.

using only 12 equally spaced images instead of 36. Correlation is computed using
only the 2 nearest cameras (± 30 deg) and, although artifacts are visible due to
the small number of silhouettes, the algorithm performs quite well computing the
texture force, which offers a good 3D reconstruction.

In Fig. 18 we present the finest reconstructions we have currently achieved with the
proposed method. We have used 36 images of 4000x4000 pixels and correlations
have been stored using an octree of 11 levels. We can observe the great quality of
the reconstructed models and the details obtained.

Fig. 13. Example of bad image correlations due to the dark and bright material. Left: one
of the original images. Middle: volume rendering of the correlation voting volume. Right:
snake mesh after convergence.
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Fig. 14. Detail of the original Twins sequence. We can observe the existence of strong
highlights on the surface. Since the highlights are not fixed from one image to another, the
correlation voting approach allows recovering the right surface, as shown in Fig. 8.

Fig. 15. Hygia model after convergence (159534 vertices). Left: Gouraud shading. Right:
shaded model with transparency and 3 slices of the GVF octree volume.

10 Conclusion and future work

We have presented a new approach to 3D object reconstruction based on the fusion
of texture and silhouette information. Our two main contributions are the definition
and the fusion of the silhouette force into the snake framework, and the full sys-
tem approach where different known techniques are used and improved in order to
obtain high quality results.

The two main limitations of the algorithm are also its two main sources of robust-
ness: the volume voting approach and the topology constant snake approach. The
voting approach allows good reconstructions in the presence of highlights, but it
also limits the maximum resolution of the 3D model. A way to overcome this lim-
itation could be introducing the final model into another snake evolution where the
texture energy computation would take into account the current shape (visibility
and tangent plane or quadric based cross-correlation). Since the initial model is al-

22



Fig. 16. Reconstructions using our proposed approach. Left: one original image used in the
reconstruction. Middle: Gouraud shading reconstructed models (45843, 83628 and 114496
vertices respectively). Right: textured models.
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Fig. 17. Twins model reconstruction using only 12 equally spaced cameras. From left to
right: visual hull initialization, final model, texture mapping and concavity recovery.

Fig. 18. Roman statues reconstructed from 36 images of 16 Mpixels. The octree used to
store the correlation hits has 11 levels of depth. From left to right, models have respectively
223308, 211714 and 204220 vertices.

ready very close to the real surface, only some iterations would suffice to converge.
The second drawback is the topology constant evolution. It allows a guaranteed
topology of the final model but it is also a limitation for some kind of objects where
the topology cannot be captured by the visual hull. A feasible solution would be to
detect self collisions of the snake [43], and to launch a local level-set based method
in order to recover the correct topology. Further work includes: i) the self calibra-
tion of the image sequence using both the silhouettes and traditional methods, ii)
an improved strategy to detect local convergence of the snake in order to freeze
optimized regions and to accelerate the evolution in the empty concavitity regions,
iii) the possible use of the surface curvatures to allow a multi-resolution evolution
of the mesh, iv) some more advanced work in the generation of the texture.
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