
Shape from photographs: a multi-view stereo
pipeline
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Abstract Acquiring 3d shape from images is a classic problem in Computer Vision
occupying researchers for at least 20 years. Only recently however have these ideas
matured enough to provide highly accurate results. We present a complete algorithm
to reconstruct 3d objects from images using the stereo correspondence cue. The
technique can be described as a pipeline of four basic building blocks: camera cal-
ibration, image segmentation, photo-consistency estimation from images, and sur-
face extraction from photo-consistency. In this chapter wewill put more emphasis
on the latter two: namely how to extract geometric information from a set of pho-
tographs without explicit camera visibility, and how to combine different geometry
estimates in an optimal way.

1 Introduction

Digital modeling of 3d scenes is becoming increasingly popular and necessary for
a wide range of applications such as cultural heritage preservation, online shopping
or computer games. Although active methods [34, 49] remain one of the most pop-
ular techniques of acquiring shape, the high cost of the equipment, complexity, and
dif�culties to capture color are three big disadvantages. As opposed to active tech-
niques, photograph-based techniques provide an ef�cient and easy way to acquire
shape and color by simply capturing a sequence of photographs of the object.

The goal of any shape-from-photographs algorithm can be described as “given a
set of input photographs, how to estimate a 3d shape that would generate the same
photographs, assuming same material, viewpoints and lighting conditions”. This
de�nition highlights the main dif�culty of the problem: photographs are obtained
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as a result of complex interactions between the geometry of the scene, the mate-
rials of the scene, the lighting conditions and the viewpoints (see Fig. 1). Hence

Fig. 1 Image formation model.The image of a 3d scene depends on its geometry, material prop-
erties, lighting conditions and pose of the viewer.

recovering the geometry just from photographs is not only a challenging problem
but also, in the general case, an ill-posed problem. It is challenging because lighting
and material properties play a very important role in the image formation model.
The same geometry with a different material or different lighting conditions can
give extremely different photographs. It is also an ill-posed problem because, in the
general case, different combinations of geometry, lighting and material can produce
exactly the same photographs, making it impossible to recover a single scene geom-
etry. The main recipe to make the problem well-posed is to usepriors on the types of
surface that one expects. Traditionally the most common type of prior is the smooth
surface prior. However when dealing with special classes ofobjects such as human
faces or man-made objects, more evolved priors have been successfully used,e.g.
human faces [54], buildings [53] or planes [15].

As for the importance of materials and lighting conditions,it has been addressed
by restricting the class of materials a particular algorithm is designed for. As a re-
sult, no single method is able to correctly reconstruct a general scene with any type
of materials and lighting conditions, leading to a plethoraof speci�c algorithms de-
signed for speci�c types of objects and using speci�c cues: silhouettes [1], texture
[50], transparency [44], defocus [14], shading [51] or correspondence, both sparse
[3] and dense [40]. Historically the most successful cues have been silhouettes, cor-
respondence, and shading. Silhouettes and correspondences are the most robust of
all due to their invariance to illumination changes. The shading cue needs a more
controlled illumination environment, but it can produce breathtaking results, which
makes it widely used too. An example of an algorithm [23] exploiting the shading
cue is shown in Fig. 2. The algorithm is designed to �nd a 3d shape that produces
the same shading as the original object. Interestingly, if the estimated 3d shape is
then used to manufacture a replica from a different material(in Fig. 2 the origi-
nal is porcelain, while the replica is plaster) we can appreciate how the replica still
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Fig. 2 Shading comparison of a porcelain �gurine and a manufactured replica obtained using
[23]. The original porcelain �gurine is shown on the left, while a manufactured replica using the
3d model obtained using [23] is shown on the right. The material ofthe replica is plaster. See how
the replica perfectly imitates the shading component, even though the materials are different.

shows the same shading pattern. This is the desired behavior, since the algorithm is
speci�cally designed to imitate the shading, not to produceidentical photographies.

Among the vast literature available on image-based modeling techniques, recent
work on multi-view stereo (MVS) reconstruction has become agrowing area of in-
terest in recent years with many differing techniques achieving a high degree of
accuracy [40]. These techniques are mainly based on the correspondence cue and
focus on producing 3d models from a sequence of calibrated images of an object,
where the intrinsic parameters and pose of the camera are known. In addition to
providing a taxonomy of methods, [40] also provides a quantitative analysis of per-
formance both in terms of accuracy and completeness. If we take a look at the top
performers, they may be loosely divided into two groups. The�rst group make use
of techniques such as correspondence estimation, local region growing and �lter-
ing to build up a “cloud of patches” [17, 19, 35, 36] that can be optionally made
dense using meshing algorithms such as Poisson reconstruction [4] or signed dis-
tance functions [12]. The second group make use of some form of global optimiza-
tion strategy on a volumetric representation to extract a surface [18, 20, 24, 47, 48].
Under this second paradigm, a 3d cost volume is computed, andthen a 3d surface is
extracted using tools previously developed for the 3d segmentation problem such as
deformable models [20], level-sets [13, 39] or graph-cuts [6, 33, 16, 24, 41, 46, 48].

The way volumetric methods usually exploit photo-consistency is by building
a 3d map of photo-consistency where each 3d location gives anestimate of how
photo-consistent would be the reconstructed surface at that location. The only re-
quirement to compute this photo-consistency 3d map is that camera visibility is
available. Unfortunately, the geometry of the scene,i.e. what we try to compute, is
required to know which cameras see a 3d location (see Fig. 3).In order to break
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Fig. 3 Occlusion problem.In order to compute shape using photo-consistency, the camera visi-
bility is required. At the same time, in order to compute the cameravisibility, the shape is required.

this dependency between visibility and shape, multi-view stereo algorithms have
taken different approaches. A majority of methods use the notion of “current sur-
face” in order to jointly optimize for camera visibility and shape. The visibility
computed from the reconstructed surface at iterationi � 1 is then used to com-
pute photo-consistency at iterationi, improving the reconstruction gradually [13].
Some methods use a proxy of the true surface to estimate visibility, such as the
visual hull [24, 48]. Finally, a third category of methods try to compute a “visibility-
independent” photo-consistency where occlusion is treated as an additional source
of image noise [7, 18, 20].

In this chapter we will give further insight into a two-stageMVS volumetric
approach: namely how to extract a 3d volume of photo-consistency from a set of
photographs without explicit camera visibility in section3, and how to extract a
surface from the photo-consistency volume in a globally optimal way in section 4.
The pipeline described in this chapter is currently a top performer in the recent
evaluation of multi-view stereo algorithms by Seitz et al[40].

2 Multi-view stereo pipeline: from photographs to 3d models

There exists a vast literature on multi-view stereo algorithms. Even though many
of the methods share the same basic architecture, they differ mainly in what type
of scenes or computation time they are optimized to work with. All the multi-view
stereo methods use the correspondence cue, which is usuallyexploited in the form
of a photo-consistency metric such as Normalized Cross Correlation, Sum of Square
Differences, or Mutual Information. Starting from the photo-consistency metric, dif-
ferent algorithms focus on different target applications such as outdoor scenes [45],
building reconstruction [11, 37, 38], interior buildings [15] or object reconstruction
[40]. In this chapter we describe a volumetric multi-view stereo approach that is op-
timized for general scene reconstruction, with a preference for watertight surfaces.
The pipeline (see �gure 4) can be described as:
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� photograph acquisition,
� camera calibration,
� computing 3d photo-consistency from a set of calibrated photographs,
� extracting a 3d surface from a 3d map of photo-consistency.

Fig. 4 3d multi-view stereo pipeline.Image calibration, photo-consistency 3d map from a set of
photographs (section 3) and surface extraction from a photo-consistency 3d map (section 4).

In the following sections we focus on how to extract 3d photo-consistency from
a set of photographs (see section 3) and how to use the 3d photo-consistency to
extract a 3d surface (see section 4). We leave the discussionon image acquisition,
e.g.real-time vs photograph-based, and on camera calibration for future discussion
(see [43] for an state-of-the-art system to calibrate a set of photographs).

3 Computing photo-consistency from a set of calibrated
photographs

Given a set of images and their corresponding camera poses, we would like to extract
a 3d map of photo-consistency that tell us how photo-consistent is a particular 3d
locationfor a given set of visible cameras. The main dif�culty of this step is how
to produce a volumetric measure of photo-consistency without the knowledge of
the set of cameras that should be used to compute photo-consistency for every 3d
location.

This problem is addressed in the proposed 3d modeling pipeline by following a
similar approach to [20] where photo-consistency is made robust to occlusion. This
approach computes a 3d map of photo-consistency as an aggregation of depth-maps
from different view-points (see Fig. 5). The creation of such a photo-consistency 3d
map is similar in spirit to the space carving approach proposed by [32]. However,
by computing it as an aggregation of depth-maps, two advantages appear:

� depth-map computation using dense stereo is a very successful and active re-
search topic. It is an ideal building block to use since improvements in the �eld
of dense stereo can be directly bene�cial to the multi-view stereo problem.
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Fig. 5 Computing a photo-consistency volume as aggregation ofdepth-maps.From left to
right, three different stages of merging individual depth-maps into a single photo-consistency vol-
ume. Right shows the �nal photo-consistency volume.

� Computation time is no longer dependent on the resolution ofthe 3d volume, but
on the number of cameras. It is also highly parallelizable, since each depth-map
is independently computed and no iterated visibility computation is required.

By building a 3d map of photo-consistency, the 3d reconstruction problem can
now be seen as a 3d segmentation task, allowing us to use algorithms previously
developed for 3d segmentation. These algorithms include deformable surfaces [20],
Poisson reconstruction [17], signed distance functions [18], Delaunay [7] or MRFs
[22, 29, 47].

A comparison of the importance of this stage in the reconstruction pipeline is
shown in Fig. 6. The occlusion-robust photo-consistency of[20] (Fig. 6 middle)

Fig. 6 Noise reduction in photo-consistency.Left: a slice of the photo-consistency used in [48]
contains falsely photo-consistent regions (e.g.near the corners). Middle: occlusion robust photo-
consistency proposed in [20] signi�cantly suppresses noise and the correct surface can be accu-
rately localized. One side of the vertical wall is missing due to heavy occlusions. Right: occlusion
robust photo-consistency proposed in [8]. The vertical wall is correctly represented.

clearly outperforms [48] (Fig. 6 left). However, since thismethod exploit the re-
dundancy between images to be robust against occlusion, it suffers with sparse data
sets (see the missing vertical wall in Fig. 6 middle). An improved version of the
occlusion-robust photo-consistency has been proposed in [8] that is capable of bet-
ter dealing with sparse data sets (see the improvement in thevertical wall in Fig.
6 right). We adopt [8] in our multi-view stereo pipeline as the building block to
compute individual depth-maps. In the remaining of this section we describe this
algorithm more in detail.
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3.1 Normalized Cross Correlation for depth-map computation

Normalized Cross Correlation (NCC) may be used to de�ne an error metric for
matching two windows in different images. Figure 7 providesan example of using
NCC and epipolar geometry to perform window based matching.If we �x a pixel
location in a reference image, for each possible depth away from that pixel we get a
corresponding pixel in the second image. By computing the NCC between windows
centered in those two pixels we can de�ne a matching score as afunction of depth
for the reference pixel. We refer to this function as thecorrelation curveof the pixel.
A typical correlation curve will exhibit a very sharp peak atthe correct depth, and
possibly a number of secondary peaks in other depths.

Fig. 7 Normalized Cross-Correlation based window matching.

In [20] a depth-map is generated for each input image using this matching tech-
nique for neighboring images. For each pixel a number of correlation curves are
computed (using a few of the neighboring viewpoints) and thedepth that gives rise
to most peaks in those curves is selected as the depth for thatpixel. See [20] or [47]
for details. This process results in an independent depth estimate for each pixel.
These depth estimates will unavoidably contain a signi�cant percentage of outliers
which must be dealt with in the subsequent step of [20] which is the volumetric
fusion of multiple depth-maps. In data sets with a large number of images this is
is overcome by the redundancy in the depth-estimates. The same surface point is
expected to be covered by many different depth-maps, some ofwhich will have the
right depth estimate. In sparse data-sets however, each surface point may be seen by
as few as two or three depth-maps. It is therefore crucial that outliers are minimized
in the depth-map generation stage.

In order to ef�ciently exploit NCC as a photo-consistency measure, we need to
focus on the two most signi�cant failure modes of NCC matching which are (1)
the presence of repetitions in the texture and (2) complete matching failure due to
occlusion, distortion and lack of texture. These are now described in more detail.
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3.1.1 Repeating texture

In general, there is no guarantee that the appearance of a patch is unique across the
surface of the object. This results in correlation curve peaks at incorrect depths due
to repeated texture — `false' matches (Fig. 7). A larger window size is more likely to
uniquely match to the true surface, reducing the number of false matches. However
the associated peak will be broader and less well localized,reducing the accuracy of
the depth estimate. The absolute value of the NCC score at a peak re�ects how well
the two windows match. Thus one might expect the peak with themaximum score
to be the true peak. Unfortunately, the appearance of false matches due to repeated
texture may result in false peaks having similar or even greater scores than the true
surface peak (Fig. 8 (a)). To identify the correct peak, we propose to apply a spatial
consistency constraint across neighboring pixels in the depth-map. The underlying
assumption is that if a peak corresponds to the true surface,the neighboring pixels
should have peaks at a similar depth. The exception to this isocclusion boundaries,
which are however catered for under the next failure mode.

3.1.2 Matching failure

The second failure mode is comprised of occlusion errors, distorted image windows
(due to slanted surfaces) and lack of texture. In all of thesecases, the correlation
curve will not exhibit a peak at the true depth of the surface,resulting in only false
peaks. Furthermore no spatial consistency can be enforced between the pixel in
question and its neighbors. In this situation we would like to acknowledge that the
depth at this pixel is unknown and should therefore offer no vote for the surface
location.

In order to achieve these two goals we propose an optimization strategy which
makes use of a discrete label Markov Random Field (MRF). The MRF allows each
pixel to choose a depth corresponding to one of the top NCC peaks which is spatially
consistent with neighboring pixels or select anunknownlabel to indicate that no
such peak occurs and there is no correct depth estimate. Thisprocess means that
the returned depth map should only contain accurate depths,estimated with a high
degree of certainty, and anunknownlabel for pixels which have no certain associated
depth. Figure 8 illustrates the optimization for a 1D example of neighboring pixels
across an occlusion boundary.

3.2 Depth Map Estimation

The proposed algorithm estimates the depth for each pixel inthe input images. It
proceeds in two stages: Initially we extract a set of possible depth values for each
pixel using NCC as a matching metric. We then solve a multi-label discrete MRF
model which yields the depth assignment for every pixel. Oneof the key features
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Fig. 8 Illustration of the MRF optimization applied to neighboring pixels. Existing method
return the maximum peak which results in outliers in the depth estimate. The MRF optimization
corrects an outlier to the true surface peak (a) and introduces an unknown label at the occlusion
boundary (b)

in this process is the inclusion of anunknownstate in the MRF model. This state is
selected when there is insuf�cient evidence for the correctdepth to be found.

3.2.1 Candidate Depths

The input to the algorithm is a set of calibrated imagesI and the output is a set of
corresponding depth-mapsD. In the following, we describe how to acquire a depth-
map for a reference imageIref 2 I . Let N(Iref) denote a set of `neighboring' images
to Iref.

As proposed in section 3.1, we wish to obtain a hypothesis setof possible depths
for each pixelpi 2 Iref. Taking each pixel in turn, we project the epipolar ray into a
second imageIn 2 Iref and sample the NCC matching score over a depth ranger i(z).
We compute the score using a rectangular window centered at the projected image
co-ordinates. One of the advantages of the multiple depth hypotheses is the ability
to use a smaller matching window to provide a faster computation and improved
localization of the surface. Once we have obtained the sampled ray we store the top
K peaksr̂ i(zi;k);k 2 [1;K] with the greatest NCC score for each pixel. Depending on
the number of images available, and the width of the camera baseline, this process
may be repeated for other neighboring images. We then continue to the optimization
stage with a set of the bestK possible depths, and their corresponding NCC scores,
over all neighboring images ofIref.
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3.2.2 MRF Formulation

At this stage a set of candidate depthsr̂ i(zi;k);k 2 [1;K]; for each pixelpi in the ref-
erence imageIref has been assigned and we wish to determine the correct depth map
label for each pixel. As described in section 3.1, we also make use of anunknown
state to account for the failure modes of NCC matching.

We model the problem as a discrete MRF where each each pixel has a set of up
to (K + 1) labels. The �rstK labels, fewer if an insuf�cient number of peaks were
found during the matching stage, correspond to the peaks in the NCC function and
have associated depthszi;k 2 Z i and scoreŝr i(zi;k). The �nal state is theunknown
stateU. If the optimization returns this state, the pixel is not assigned a depth in
the �nal depth map. For each pixel we therefore form an augmented label setz0

i;k 2
fZ i ;Ugto include the unknown state.

The optimization assigns a labelk̄i 2 f 1:::K;U)g to each pixelpi . The cost func-
tion to be minimized consists of unary potentials for each pixel and pairwise inter-
actions over �rst order cliques. The cost of a labelingk̄ = f k̄ig is expressed as

E
�
k̄
�

= å
i

f (k̄i) + å
(i; j)

y (k̄i ; k̄ j ) (1)

wherei denotes a pixel and(i; j) denote neighboring pixels.
The following sections discuss the formulation of the unarypotentialsf (�) and

pairwise interactionsy (�; �).

3.2.3 Unary Potentials

The unary labeling cost is derived from the NCC score of the peak. We wish to pe-
nalize peaks with a lower matching score since they are more likely to correspond
to an incorrect match due to occlusion or noise. The NCC process will always re-
turn a score in the range[� 1;1]. As is common practice, [47], we take an inverse
exponential function to map this score to a positive cost.

The unary cost for theunknownstate is set to a constant valuef U. This term
serves two purposes. Firstly it acts as a cut-off threshold for peaks with poor NCC
scores which have no pairwise support (neighboring peaks ofsimilar depth). This
mostly accounts for peaks which are weakly matched due to distortion or noise.
Secondly it acts as a truncation on the depth disparity cost of the pairwise term. By
assigning a low pairwise cost between peaks and theunknownstate, the constant
unary cost will effectively act as a threshold on the depth disparity to handle the
case of an occlusion boundary. Thus the �nal unary term is given by

f
�
ki = x

�
=

8
>><

>>:

l e� b r̂ i(zi;x) x 2 [1:::K]

f U x = U
: (2)
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3.2.4 Pairwise Interactions

The pairwise labeling cost is derived from the disparity in depths of neighboring
peaks. As has been previously mentioned, this term is not intended to provide a
strong regularization of the depth map. Instead it is used totry and determine the
correct peak, corresponding to the true surface location, out of the returned peaks.
We observe that the correct peak may not have the maximum score. Therefore if
there is strong agreement on depth between neighboring peaks, we take this to be
the true location of the surface.

When dealing with the depth disparity term we are really considering surface ori-
entation; whether the surface normal is pointing towards oraway from the camera.
Under a perspective projection camera model it is thereforenecessary to correct for
the absolute depth of the peaks rather than simply taking thedifference in depth.
We perform this correction by dividing by the average depth of the two peaks. The
resulting pairwise term is given by

y
�
ki = x;k j = y

�
=

8
>>>>>>>>>><

>>>>>>>>>>:

2

�
�zi;x � zj ;y

�
�

(zi;x + zj ;y)
x 2 [1:::K] y 2 [1:::K]

y U x = U y 2 [1:::K]

y U x 2 [1:::K] y = U

0 x = U y = U

: (3)

We sety U to a small value to encourage regions with many pixels labeled asun-
knownto coalesce. This acts as a further stage of noise reduction since it prevents
spurious peaks with high scores but no surrounding support from appearing in re-
gions of occlusion.

3.2.5 Optimization

To obtain the �nal depth map we need to determine the optimal labelingk̂ such that

E( k̂ ) = arg min
(k̄)

å
i

f (k̄i) + å
(i; j)

y (k̄i ; k̄ j ) : (4)

Since in the general case this is an NP-hard problem we must use an approximate
minimization algorithm to achieve a solution. The most well-known techniques for
solving problems of this nature are based on graph-cuts and belief propagation. In-
stead, we use the recently developed sequential tree-reweighted message passing
algorithm, termed TRW-S, of [30]. This has been shown to outperform belief prop-
agation and graph-cuts in tests on stereo matching using a discrete number of dis-
parity levels. In addition to minimizing the energy, the algorithm estimates a lower
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bound on the energy at each iteration which is useful in checking for convergence
and evaluating the performance of the algorithm. We should note, however, that we
are by no means guaranteed that the lower bound is attainable.

3.3 Photo-consistency 3d map from a set of depth-maps

In order to create a 3d volume of photo-consistency from a setof depth-mapsD
we “uplift” every depth-map inD into 3d using the camera calibration data. The
photo-consistency of a 3d pointx is de�ned as the sum of the con�dences of all its
nearby depth-map points. That is, given all the uplifted depth-map 3d pointsdi and
their corresponding con�dence valuessi , the photo-consistencyC(x) can be de�ne
as

C(x) = å
i:jx� di j< e

si ; (5)

wheree is a pre-de�ned ball size. If the photo-consistency is to be discretize using
a volumetric grid, thene is simply the size of a voxel.

4 Extracting a 3d surface from a 3d map of photo-consistency

Given a 3d map of photo-consistency, we would like to extracta 3d surface. As
mentioned earlier, by building a 3d map of photo-consistency, the reconstruction
problem can now be solved using 3d segmentation techniques.Out of all the seg-
mentation algorithms available, MRF approaches are very widely spread due to its
global convergence properties. They also allow the fusion of different cues in an
elegant way,e.g.see [29]. One of the main criticisms of MRFs applied to 3d seg-
mentation is the discretization artifacts originating from its discrete nature. In order
to remove them, the surface is usually further re�ned using acontinuous formulation
such as level-sets [13, 39] or deformable models [20], allowing for a �ner control of
the regularization than the one provided by MRFs. In the remaining of this section
we describe the MRF framework for multi-view stereo �rst proposed by [47] and
further extended in [22]. We also describe the deformable model by [20] that we use
as a re�nement step.

4.1 Multi-view stereo using multi-resolution graph-cuts

In [5] and subsequently in [2] it was shown how graph-cuts canoptimally partition
2d or 3d space into `foreground' and `background' regions under any cost functional
consisting of the following two terms:
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� Labeling cost or unary term: for every point in space there is a cost for it being
labeled `foreground' or `background'.

� Discontinuity cost or binary term: for every point in space, there is a cost for
it lying on the boundary between the two partitions.

Mathematically, the cost functional described above can beseen as the sum of a
weightedsurface areaof the boundary surface and a weightedvolumeof the `fore-
ground' region as follows:

E(S) =
Z

S
r (x)dA+

Z

V(S)
s (x)dV (6)

whereSis the boundary between `foreground' and `background',V(S) denotes the
`foreground' volume enclosed bySandr ands are two scalar density �elds. The
application described in [5] was the problem of 2d/3d segmentation. In that domain
r (x) is de�ned as a function of the image intensity gradient ands (x) as a function
of the image intensity itself or local image statistics.

In the framework of the multi-view stereo problem, this model balances two com-
peting terms: the �rst one minimizes a surface integral of photo-consistency (binary
term) while the second one maximizes the volume of regions with a high evidence
of being foreground (unary term). In the literature, it is usually the binary term that
is data driven, while the unary term is just used as a basic prior, e.g.as a ballooning
term [9]. In this work, we use the photo-consistency 3d map computed in section 3
as the binary term. As for the unary term, very little work hasbeen done to obtain an
appropriate ballooning term. In most of the previous work onvolumetric multi-view
stereo the ballooning term is a very simplistic in�ationaryforce that is constant in
the entire volume,i.e.s (x) = � l . This simple model tries to recover thin structures
by maximizing the volume inside the �nal surface. However, as a side effect, it also
�lls in concavities behaving as a regularization force and smoothing �ne details.

When silhouettes of the object are available, an additionalsilhouette cuecan be
used [24, 48], which provides the constraint that all pointsinsidethe object volume
must project inside the silhouettes of the object. Hence thesilhouette cue can pro-
vide some foreground/background information by giving a very high likelihood of
beingoutsidethe object to 3d points that project outside the silhouettes. However
this ballooning term is not enough if thin structures or big concavities are present, in
which case the method fails (see Fig. 16 middle row). Very recently, a data driven,
foreground/background model based on the concept ofphoto-�ux has been intro-
duced [6]. However, the approach requires approximate knowledge of the object
surface orientation which in many cases is not readily available.

Ideally, the ballooning term should be linked to the notion of visibility, where
points that are not visible from any camera are considered tobe inside the object or
foreground, and points that are visible from at least one camera are considered to
be outside the object orbackground. An intuition of how to obtain such a balloon-
ing term is found in a classic paper on depth sensor fusion by Curless and Levoy
[12]. In that paper the authors fuse a set of depth sensors using signed distance func-
tions. This fusion relies on the basic principle that the space between the sensor and
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the depth map should be empty or background, and the space after the depth map
should be considered as foreground. In this section we follow the approach by [22]
where this visibility principle is generalized and computed in a probabilistic ver-
sion by calculating the “evidence of visibility” from a given set of depth-maps. The
“evidence of visibility” is then used as an intelligent ballooning term.

The outline of the full system is as follows:

� create a set of depth-maps from the set of input calibrated photographs,
� compute the photo-consistency 3d map from the set of depth-maps,
� derive the discontinuity costr (x) from the photo-consistency 3d map,
� derive the labeling costs (x) from the set of depth-maps,i.e. use a data-aware

ballooning term computed from the evidence of visibility and,
� extract the �nal surface as the global solution of the min-cut problem givenr (x)

ands (x).

A real example of discontinuity and labeling costs is shown in Fig.9. Note they have
been computed on a multi-resolution grid.

Fig. 9 Different terms used in the graph-cut algorithm to reconstruct the Gormley sculpture
of Fig. 16.Left: multi-resolution grid used in the graph-cut algorithm. Middle: Discontinuity cost
r (x) (or photo-consistency). Right: labeling costs (x) (or intelligent ballooning).

The algorithm just described can also be used when the input is no longer a set of
photographs but a set of depth-maps obtained from other types of sensor,e.g.laser
scanner. In this case, the system just skips the �rst step, since the depth-maps are
already available, and computesr ands directly from the set of depth-maps given
as input.

4.2 Discontinuity cost from a set of depth-maps

Once we have computed a depth-map for every input image, we can build the photo-
consistency 3d map(x) for every 3d locationx as explained in section 3.3. Since the
graph-cut algorithmminimizes the discontinuity cost, and we want tomaximizethe
photo-consistency, we invert the discontinuity mapr (x) using the exponential:
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r (x) = e� mC(x) ; (7)

wherem is a very stable rate-of-decay parameter that converts photo-consistency
scores into a normalized discontinuity cost in the range[0;1].

As a way of improving the big memory requirements of graph-cut methods, we
propose to store the values ofr (x) in an octree partition of 3d space. The size of the
octree voxel will depend on the photo-consistency valueC(x). Voxels with a non-
zero photo-consistency value will have the �nest resolution while the remaining
space whereC(x) = 0 will be partitioned using bigger voxels, the voxel size being
directly linked with the distance to the closest non-empty voxel (see Fig. 9 for an
example of such an octree partition).

4.3 Graph structure

To obtain a discrete solution to Equation (6) 3d space is quantized into voxels using
an octree partition. The graph nodes consist of all voxels whose centers are within
a certain bounding box that is guaranteed to contain the object. For the results pre-
sented here these nodes were connected with a regular 6-neighborhood grid. Bigger
neighborhood systems can be used which provide a better approximation to the con-
tinuous functional (6), at the expense of using more memory to store the graph. Now
assume two voxels centered atxi andxj are neighbors. Let the smaller voxel be size
h� h� h. Then the weight of the edge joining the two corresponding nodes on the
graph will be [5]

wi j =
4ph2

3
r

�
xi + xj

2

�
(8)

wherer (x) is the matching cost function de�ned in (7). In addition to these weights
between neighboring voxels there is also the ballooning force edge connecting every
voxel to the source node with a constant weight ofwb = l h3. Finally, the outer
voxels that are part of the bounding box (or the voxels outside the visual hull if
that is available) are connected with the sink with edges of in�nite weight. The
con�guration of the graph is shown in �gure 10 (right).

It is worth pointing out that the graph structure described above can be thought
of as a simple binaryMRF. Variables correspond to voxels and can be labeled as
beinginsideor outsidethe scene. The unitary clique potential is just 0 if the voxel
is outside andwb if it is inside the scene while the pairwise potential between two
neighbor voxelsi and j is equal towi j if the voxels have opposite labels and 0
otherwise. As a binary MRF with asub-modularenergy function [31] it can be
solved exactly in polynomial time using Graph-cuts.
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Fig. 10 Surface geometry and �ow graph construction.On the left: a 2d slice of space showing
the bounding volume and the optimal surface inside it that is obtained by computing the minimum
cut of a weighted graph. Note that complicated topologies suchas holes or disjoint volumes can
be represented by the model and recovered after optimization. On the right: the correspondence of
voxels with nodes in the graph. Each voxel is connected to itsneighbors as well as to the source.

4.4 Labeling cost from a set of depth-maps

In the same way as the computation of the discontinuity cost,the ballooning term
s (x) can be computed exclusively from a set of depth-maps. We propose to use
the probabilistic evidence for visibility proposed by [22]and described in section
4.5 as anintelligent ballooning term. To do so, all we need is to choose a noise
model for the sensor given a depth-mapD and its con�denceC(D). We propose
to use a simplistic yet powerful model of a Gaussian contaminated with a uniform
distribution,i.e. an inlier model plus an outlier model. The inlier model is assumed
to be a Gaussian distribution centered around the true depth. The standard deviation
is considered to be a constant value that only depends on the image resolution and
camera baseline. The outlier ratio varies according to the con�dence on the depth
estimationC(D), and in this work is just proportional to it. The labeling cost s (x) at
a given location is just the evidence of visibility. The details of this calculation are
laid out in the next section.

4.5 Probabilistic fusion of depth sensors

This section considers the problem of probabilistically fusing depth maps obtained
from N depth sensors. We will be using the following notation: The sensor data is a
set ofN depth mapsD = D1; : : : ;DN. A 3d pointx can therefore be projected to a
pixel of the depth map of thei-th sensor and the corresponding depth measurement
at that pixel is written asDi(x) while D�

i (x) denotes the true depth of the 3d scene.
The measurementDi(x) contains some noise which is modeled probabilistically by
a pdf conditional on the real surface depth

p(Di(x) j D�
i (x)) : (9)
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of sensor i
estimate

D (x)i
*

D (x)i

3D surface
x

sensor i

d (x)i

Fig. 11 Sensor depth notation. Sensori measures the depth of the scene along the optic ray from
the sensor to 3d pointx. The depth of pointx from sensori is di (x) while the correct depth of the
scene along that ray isD�

i (x) and the sensor measurement isDi (x).

The depth of the pointx away from the sensor isdi(x) (see �gure 11). Ifx is located
on the 3d scene surface then8i D �

i (x) = di(x). If for a particular sensori we have
D�

i (x) > di(x) this means that the sensor cansee beyondx or in other words thatx
is visible from the sensor. We denote this event byVi(x). When the opposite event
Vi(x) is true, as in �gure 11, thenx is said to beoccludedfrom the sensor. To fuse
these measurements we consider a predicateV(x) which is read as:̀x is visible from
at least one sensor'. More formally the predicate is de�ned as follows:

V(x) � 9 i Vi(x) (10)

V(x) acts as a proxy for the predicate we should ideally be examining which is
`x is outside the volume of the 3d scene'. However the sensors cannot provide any
evidence beyondD�

i (x) along the optic ray, the rest of the points on that ray being
occluded. If there are locations that are occluded from all sensors, no algorithm
could produce any evidence for these locations being insideor outside the volume.
In that sense therefore,V(x) is the strongest predicate one could hope for in an
optical system. An intuitive assumption made throughout this section is that the
probability ofV(x) depends only on the depth measurements of sensors along optic
rays that go throughx. This means that most of the inference equations will be
referring to a single pointx, in which case thex argument can be safely removed
from the predicates.

The set of assumptions which we denote byJ consists of the following:

� The probability distributions of the true depths of the scene D�
1(x) � � � D�

N(x) and
also of the measurementsD1(x) � � � DN(x) are independent givenJ (see �gure
12 for justi�cation).

� The probability distribution of of a sensor measurement given the scene depths
and all other measurements only depends on the surface depthit is measuring:

p
�
Di j D�

1 � � � D�
N D j6= i J

�
= p(Di j D�

i J ) (11)



18 Carlos Herńandez and George Vogiatzis

sensor 1

sensor 2

x

Fig. 12 Visibility from sensors. In the example shown above the point is not visible from sensor
2 while it is visible from sensor 1,i.e. we haveV1V2. In the absence a surface prior that does not
favor geometries such as the one shown above, one can safely assume that there is no probabilistic
dependence between visibility or invisibility from any two sensors.

We are interested in computing the evidence function under this set of indepen-
dence assumptions [26] for the visibility of the point givenall the sensor measure-
ments:

e(V j D1 � � � DNJ ) = log
p(V j D1 � � � DNJ )
p

�
V j D1 � � � DNJ

� : (12)

FromJ and rules of probability one can derive:

p
�
V j D1 � � � DNJ

�
=

N

Õ
i= 1

p
�
V i j DiJ

�
: (13)

and

p
�
V i j DiJ

�
=

Rdi
0 p(Di j D�

i J ) p(D�
i j J ) dD�

iR¥
0 p(Di j D�

i J ) p(D�
i j J ) dD�

i
(14)

As mentioned, the distributionsp(Di j D�
i J ) encode our knowledge about the mea-

surement model. Reasonable choices would be the Gaussian distribution or a Gaus-
sian contaminated by an outlier process. Both of these approaches are evaluated in
section 5. Another interesting option would be multi-modaldistributions. The prior
p(D�

i j J ) encodes some geometric knowledge about the depths in the scene. In all
the examples presented a bounding volume was given so we assumed a uniform
distribution ofD�

i inside that volume.
If we write pi = p

�
V i j DiJ

�
then the evidence for visibility is given by:

e(V j D1 � � � DNJ ) = log
1� p1 : : :pN

p1 : : :pN
: (15)

In the following section we point out an interesting connection between the proba-
bilistic visibility approach and one of the classic methodsin the Computer Graphics
literature for merging range data.
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4.5.1 Signed distance functions

In [12], Curless and Levoy compute signed distance functions from each depth-
map (positive towards the camera and negative inside the scene) whose weighted
average is then stored in a 3d scalar �eld. So ifwi(x) represents the con�dence of
depth measurementDi(x) in thei-th sensor, the 3d scalar �eld they compute is:

F(x) =
N

å
i= 1

wi(x) (di(x) � Di(x)) (16)

The zero level ofF(x) is then computed using marching cubes. While this method
provides quite accurate results it has a drawback: For a set of depth maps around a
closed object, distances from opposite sides interfere with each other. To avoid this
effect [12] actually clamps the distance on either side of a depth map. The distance
must be left un-clamped far enough behind the depth map so that all distance func-
tions contribute to the zero-level crossing, but not too farso as to compromise the
reconstruction of thin structures. This limitation is due to the fact that the method
implicitly assumes that the surface has low relief or that there are no self-occlusions.
This can be expressed in several ways but perhaps the most intuitive is that every
optic ray from every sensor intersects the surface only once. This means that if a
point x is visible from at least one sensor then it must be visible from all sensors
(see �gure 12). Using this assumption, an analysis similar to the one in the previ-
ous section leads to some a surprising insight into the algorithm. More precisely,
if we set the prior probability for visibility top(V) = 0:5 and assume the logistic
distribution for sensor noise,i.e.

p(Di ;D�
i j I ) µ sech

�
D�

i � Di

2wi

� 2

(17)

then the probabilistic evidence forV given all the data exactly corresponds to the
right hand side of (16). In other words, the sum of signed distance functions of [12]
can be seen as an accumulation of probabilistic evidence forvisibility of points in
space, given a set of noisy measurements of the depth of the 3dscene. This further
reinforces the usefulness of probabilistic evidence for visibility.

4.6 Deformable models

In a similar way to the MRF framework in section 4.1, the deformable model frame-
work [27] allows us to search for an optimal surfaceS� that is a minimizer of some
user de�ned energy functionE. In general, this energy will be non-convex with pos-
sible local optima. In our case, the optimization problem isposed as follows: �nd
the surfaceS� of R3 that minimizes the energyE(S) de�ned as:
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E(S) = Eext(S)+ Eint(S); (18)

whereEext(S) is the external energy term related to the photo-consistency 3d map
andEint(S) is the internal energy term or regularization term,i.e. a smooth prior on
the types of surfaces that we expect. Minimizing Eq. (18) means �nding a surface
S� such that satis�es the Euler equation:

ÑE(S� ) = ÑEext(S� ) + ÑEint(S� ) = 0: (19)

Equation (19) establishes the equilibrium condition for anoptimal solution and can
also be seen as a force balance equation:

Fext(S� ) + Fint(S� ) = 0 (20)

with Fext(S) = ÑEext(S) andFint(S) = ÑEint(S). A solution to Eq. (20) can be found
by introducing a time variablet for the surfaceS and solving the following differ-
ential equation:

¶S
¶t

= Fext(S)+ Fint(S): (21)

The discrete version becomes:

Sk+ 1 = Sk + Dt(Fext(Sk) + Fint(Sk)) : (22)

Once we have sketched the energies that will drive the process, we need to make a
choice for the representation of the surfaceS. This representation de�nes the way the
deformation of the surface is performed at each iteration. We choose the triangular
mesh because of its simplicity and well known properties, but other options such as
implicit surface representations can be used [25].

To completely de�ne the deformation framework, we need an initial value ofS,
i.e.an initial surfaceS0 that will evolve under the different forces until convergence.
S0 can range from the most basic initial shape such as a boundingbox, to a better
one like the visual hull, or an even better one such as the provided by the MRF
framework in section 4.1.

In the following we describe how to derive the external forcefrom the photo-
consistency 3d map and the internal force on a triangular mesh.

4.6.1 External force: octree-based gradient vector �ow

The external force is directly linked to the photo-consistency 3d map previously
described in section 3. We want this force to drive the surface to high photo-
consistency locations. However the volume of photo-consistencyC(x) itself cannot
be used as a force to drive the deformable model. A typical force would be the gra-
dient ofC(x), i.e.Fext(x) = ÑC(x). The main objection is that it is a very local force
de�ned only in the vicinity of the object surface. A better solution is to use a gra-
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dient vector �ow (GVF) �eld derived from the photo-consistency in order drive the
deformable model.

The GVF �eld was introduced by [52] as a way to overcome a dif�cult problem
of traditional deformable models: the capture range of the data term. This problem
is caused by the local de�nition of the force, and the absenceof an information
propagation mechanism. To eliminate this drawback, and forall the forces derived
from the gradient of a scalar �eld, they proposed to generatea vector �eld force
that propagates the gradient information. The GVF of a scalar �eld f (x;y;z) : R3 7!
R is de�ned as the vector �eldF = [ u(x;y;z);v(x;y;z);w(x;y;z)] : R3 7! R3 that
minimizes the following energy functionalEGVF:

EGVF =
Z

mjjÑFjj2 + jjF � Ñ f jj2jjÑ f jj2; (23)

wherem is the weight of the regularization term andÑF = [ Ñu;Ñv;Ñw]. The solu-
tion to this minimization problem has to satisfy the Euler equation:

mÑ2F � (F � Ñ f )jjÑ f jj2 = 0; (24)

whereÑ2F = [ Ñ2u;Ñ2v;Ñ2w] andÑ2 is the Laplacian operator. A numerical solu-
tion can be found by introducing a time variablet and solving the following differ-
ential equation:

¶F
¶t

= mÑ2F � (F � Ñ f )jjÑ f jj2: (25)

The GVF can be seen as the original gradient smoothed by the action of a Laplacian
operator. This smoothing action allows eliminating strongvariations of the gradient
and, at the same time, propagating it. The degree of smoothing/propagation is con-
trolled by m. If m is zero, the GVF will be the original gradient, ifm is very large,
the GVF will be a constant �eld whose components are the mean of the gradient
components. Applied to the deformable model problem, the external forceFext is
then found as the solution of the following differential equation:

¶Fext

¶t
= mÑ2Fext � (Fext � ÑC)jjÑCjj2; (26)

with malways �xed to 0:1.

4.6.2 Mesh Control

The goal of the internal force is to regularize the effect of the external forces. Fol-
lowing the formulation by [10], we de�ne the internal energyEint of a surfaceSas
the sum of two terms penalizing for changes in the �rst and second order deriva-
tives of the surface. A local minimum of the energyEint(S) satis�es the associated
Euler-Lagrange equation, which gives us the following formfor the internal force:

Fint(S) == g1DS+ g2D2S; (27)
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whereD is the Laplacian operator andD2 is the biharmonic operator. The discrete
version of the Laplacian operator̃D on a triangle mesh can be easily implemented
using the umbrella operator,i.e. the operator that tries to move a given vertexv of
the mesh to the center of gravity of its 1-ring neighborhoodN1(v):

D̃v =

 

å
i2N 1(v)

vi

m

!

� v; (28)

wherevi are the neighbors ofv andm is the total number of these neighbors (va-
lence). Concerning the discrete version of the biharmonic operatorD̃2, its derivation
is less trivial:

D̃2v =
1

1+ å i2N 1(v)
1

mmi

D̃(D̃v); (29)

The total internal force on a mesh vertexv is de�ned as:

Fint(v) = g1D̃v+ g2D̃2v: (30)

Since the texture forceFext can sometimes be orthogonal to the surface of the
snake, we do not use the forceFext itself but its projectionFN

ext onto the surface
normaln:

FN
ext(v) = ( n> � Fext(v))n: (31)

This avoids problems of coherence in the force of neighbor points and helps the
internal force to keep a well-shaped surface.

The evolution process (Eq. 22) at thekth iteration can then be written as the
evolution of all the points of the meshvi :

vk+ 1
i = vk

i + Dt(FN
ext(v

k
i ) + Fint(vk

i )) ; (32)

whereDt is the time step anda is the weight of the regularization term relative to
the external term. Equation (32) is iterated until convergence of all the points of the
mesh is achieved. The time stepDt has to be chosen as a compromise between the
stability of the process and the convergence time. An additional step of remeshing
is done at the end of each iteration in order to maintain a minimum and a maximum
distance between neighbor points of the mesh. This is obtained by a controlled dec-
imation and re�nement of the mesh. The decimation is based onthe edge collapse
operator and the re�nement is based on the

p
3-subdivision scheme [28].
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5 Experiments

5.1 Depth map evaluation

In order to solve the depth-map computation algorithm described in section 3, we
use the TRW-S implementation of Kolmogorov [30]. The proposed implementation,
running on a 3.0 GHz machine with an nVidia Quadro graphics card, can evaluate
900 NCC depth slices in 20 seconds for the temple sequence (image resolution
640� 480). The TRW-S optimization has a typical run time of 20 seconds for the
same images.

For all the experiments we used the following parameter values:b = 1, l = 1,
f U = 0:04 andy U = 0:002. We used an NCC window size of 5� 5.

Fig. 13 illustrates the improvement of the method describedin section 3.2 over
the voting schemes of [20, 47]. Fig. 13 (b) shows the depth that would be deter-
mined by simply taking the NCC peak with the greatest score. The new method,
implemented here withK = 9 peaks, is able to select the peak corresponding to
true surface peak from the ranked candidate peaks and Fig. 13(d) illustrates that a
signi�cant proportion of the true surface peaks are not the absolute maximum. We
also observe that pixels are correctly labeled with theunknownstate along occlu-
sion boundaries and along areas such as the back wall of the temple and edges of the
pillars where the surface normal is oriented away from the camera. Looking at the
rendering of this depth-map and its neighbor, Fig. 13(e-g),we can observe that very
few erroneous depths are recovered and we observe that the combination of the two
depths maps align and complement each other rather than attempting to �ll in the
holes on the individual depth-maps which would impact the subsequent multi-view
stereo global optimization.

Fig. 14 shows the results on the `cones' dataset which forms part of the standard
dense stereo evaluations images and consists of a single stereo pair with the left im-
age shown. The depth-map again shows a high degree of detail on textured surfaces
and we correctly identify occlusion boundaries with theunknownstate. Further more
the algorithm also correctly textures the failure modes of NCC by returning theun-
knownstate in texture-less regions where the matching fails to accurately localize
the surface.

5.2 Multi-view stereo evaluation

In order to evaluate the improvement of the depth-map estimation algorithm of sec-
tion 3.2 for multi-view stereo we ran the algorithm on the standard evaluation `tem-
ple' dataset. The following table provides the accuracy andcompleteness measures
of [40] against the ground-truth data for the object. In terms of both accuracy and
completeness the results provide a signi�cant improvementin both the sparse ring
and ring datasets. In particular we observe that the resultsfor the sparse ring of-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13 Results of the depth map estimation algorithm.Two neighboring images are combined
with the reference image (a). If we simply took the NCC peak with the maximum score, as in
[20], we would obtain (b). The result of the algorithm used in section 3.2 (c) shows a signi�cant
reduction in noise. We have corrected noisy estimates of the surface and theunknownstate has
also been used to clearly denote occlusion boundaries and removepoorly matched regions. The
number of the correct surface peak returned, ranked by NCC score, is displayed in (d) where dark
red indicates the peak with the greatest score. The rendered depth-map is shown in (e) along with
the neighboring depth-map (f) with (g) showing the two superimposed. The �nal reconstruction
(h) for the sparse temple sequence (16 images) of [40]

(a) (b) (c)

Fig. 14 Single view stereo results for the `Cones' data set.The left image of the stereo pair is
shown in (a) with the recovered depth-map in (b), rendered in (c)
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fer greater accuracy than the other algorithms [40] runningon the ring sequence (3
times as many images) with the exception of [20].

Accuracy / Completeness
Full (312 images) Ring (47 images) SparseRing(16 images)

proposed method 0.41mm / 99.9% 0.48mm / 99.4% 0.53mm / 98.6%

5.3 Digitizing works of art

The proposed pipeline has been used to reconstruct a bronze statue located in the
British museum in London from holiday photographs. The photographs were taken
by a hand held camera during normal visiting hours (see Fig. 15). This led to the
statue being photographed with cluttered and changing background. The camera
motion was automatically recovered using a structure-from-motion technique [55].
The bottom row of �gure 15 shows the intermediate results obtained while recon-
structing the statue. From left to right, we show a renderingof the 3d map of photo-
consistency (section 3), the initial surface obtained using graph-cuts (section 4.1),
the re�ned surface obtained with the deformable model (section 4.6), and the same
surface textured mapped from the input photographs using [20]. Note how, even
with a noisy photo-consistency 3d volume, the graph-cut solution is able to extract a
very detailed surface. However, this surface has discretization artifacts due to the bi-
nary nature of the graph-cut solution. These artifacts are completely removed when
the surface is re�ned using a deformable model. A similar re�nement step is also
used in [17].

We present a second sequence of 72 images of a “crouching man” sculpture made
of plaster by the modern sculptor Antony Gormley (see Fig. 16top).

The image resolution is 5 Mpix and the camera motion was recovered by standard
structure from motion techniques [55] and further re�ned using a silhouette-based
technique [21]. The object exhibits signi�cant self-occlusions, a large concavity in
the chest and two thin legs which make it a very challenging test to validate the
new ballooning term. The �rst step in the reconstruction process is to compute a set
of depth-maps from the input images. This process is by far the most expensive of
the whole pipeline in terms of computation time. A single depth-map takes between
90 and 120 seconds, the overall computation time being closeto 2 hours. Once the
depth-maps are computed, a 3d octree grid can be built (see Fig. 9 left) together
with the discontinuity cost and the labeling cost (see Fig. 9middle and right respec-
tively). Because of the octree grid, we are able to use up to 10levels of resolution
to compute the graph-cut,i.e. the equivalent of a regular grid of 10243 voxels. We
show in �gure 16 some of the images used in the reconstruction(top), the result us-
ing an implementation of [48] (middle) and the reconstruction result of the proposed
method (bottom). We can appreciate how the constant ballooning term introduced in
[48] is unable to reconstruct correctly the feet and the concavities at the same time.
In order to recover thin structures such as the feet, the ballooning term needs to be
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Fig. 15 Statue of a young man, Mimaut Collection. Bronze, Roman copy of the 1st century
BC after a Greek original. From Ziphteh, near Tell Atrib (anci ent Athribis), Egypt . The
sequence was acquired with a hand held camera in the British museumwith no special require-
ments. Background is extremely cluttered. The object of interest is both in the center of the pho-
tographs and in focus. Top and middle rows show a few samples of the original sequence. Last
row shows from left to right, 3d map of photo-consistency described in section 3, surface extracted
using graph-cuts (section 4.1), surface re�ned using a deformable model (section 4.6) and surface
textured-map from the original photographs using [20].

stronger. But even before the feet are fully recovered, the concavities start to over
in�ate.

Finally we show in �gure 17 the effect of having an outlier component in the
noise model of the depth sensor when computing the volume of evidence of visibil-
ity. The absence of an outlier model that is able to cope with noisy depth estimates
appears in the volume of visibility as tunnels “drilled” by the outliers (see Fig. 17
center). Adding an outlier term clearly reduces the tunneling effect while preserving
the concavities (see Fig. 17 right).
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Fig. 16 Comparison of the improvement obtained with the visibility-driven ballooning term.
Plaster model of a crouching man by Antony Gormley, 2006. Top: some of the input images.
Middle: views of reconstructed model using the technique of [48] with a constant ballooning term.
No constant ballooning factor is able to reconstruct correctly the feet and the concavities at the
same time. Bottom: views of reconstructed model using the intelligent ballooning proposed by
[22] and shown in Fig.17 right.

Fig. 17 Comparison of two different inlier/outlier ratios fo r the depth sensor noise model.
Left: 3d location of one slice of the volume of “evidence of visibility”. Middle: the sensor model is
a pure Gaussian without any outlier model. Outliers “drill ” tunnels in the visibility volume. Right:
the sensor model takes into account an outlier model. The visibility volume is more robust against
outliers while the concavities are still distinguishable.
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6 Discussion

We have described a formulation to multi-view stereo that splits the problem into a
well de�ned pipeline of 3 building blocks: camera calibration, computation of a 3d
volume of photo-consistency and extraction of a surface from the photo-consistency
volume. In this chapter we have particularly focus on how to compute a 3d volume
of photo-consistency, and how to extract a 3d surface from the photo-consistency
volume. The main advantages of such an approach are its simplicity and room for
improvement, since it uses two very standard off-the-shelfalgorithms such as dense
stereo and 3d segmentation algorithms. The main disadvantage is the rather simplis-
tic photo-consistency metric, which leads to poor performance in challenging condi-
tions such as sparse set of photographs or poorly textured surfaces. These problems
are partially mitigated by explicitly accounting for the failure modes of the window
matching technique in section 3. However, a more thorough matching technique
using a local planarity assumption such as [17] would also greatly improve results
in challenging scenes. The framework we describe in this chapter has been widely
adopted by a variety of multi-view stereo algorithms [7, 8, 18, 20, 24, 29, 38, 42, 47].
This can be mainly justi�ed by the simplicity of the approach, but also by the �ex-
ibility that it offers, e.g.when trying to optimally fuse the photo-consistency cue
with apparent contours as proposed in [29].

Appendix. Interpretation of signed distance functions.

Using the predicates we have already de�ned, the assumptionof no self-occlusion
can be expressed by

V $ 8 i Vi : (33)

From (10) and (33) we see that if a pointx is visible (invisible) from one sensor it
is visible (invisible) from all sensors, i.e.V1 $ � � � $ VN $ V. Let I stand for the
prior knowledge which includes the geometric description of the problem and (33).
Given (33) eventsD1 � � � DN are independent under the knowledge ofV or V which
means that using Bayes' theorem we can write:

p(V j D1 � � � DNI ) =
p(V j I ) ÕN

i= 1 p(Di j VI )
p(D1 � � � DN j I )

(34)

Obtaining the equivalent equation forV and dividing with equation (34) and taking
logs gives us:

e(V j D1 � � � DNI ) = e(V j I ) +
N

å
i= 1

log
p(Di j VI )
p

�
Di j VI

� : (35)
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By several applications of Bayes' theorem we get:

e(V j D1 � � � DNI ) =
N

å
i= 1

log
a i

bi
� (N � 1)e(V j I ) : (36)

wherea i =
R¥

di
p(Di ;D�

i j I ) dD�
i andbi =

Rdi
0 p(Di ;D�

i j I ) dD�
i . We now sete(V j I ) =

0 and assume the noise model is given by the logistic function

p(Di ;D�
i j I ) µ sech

�
D�

i � Di

2wi

� 2

: (37)

Using standard calculus one can obtain the following expression for the evidence

e(V j D1 � � � DNI ) =
N

å
i= 1

wi (di � Di) ; (38)

equal to the average of the distance functions used in [12].
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23. Herńandez, C., Vogiatzis, G., Cipolla, R.: Multi-view photometric stereo. IEEE Trans. Pattern
Anal. Mach. Intell.30(1), 548–554 (2008)

24. Hornung, A., Kobbelt, L.: Hierarchical volumetric multi-view stereo reconstruction of mani-
fold surfaces based on dual graph embedding. In: Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), vol. 1, pp. 503–510 (2006)

25. Ilic, S., Fua, P.: Implicit meshes for surface reconstruction. IEEE Transactions on Pattern
Analysis and Machine Intelligence28(2), 328–333 (2006)

26. Jaynes, E.: Probability Theory, The Logic of Science. Cambridge University Press (2003)
27. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal

of Computer Vision1, 321–332 (1988)
28. Kobbelt, L.:

p
3-subdivision. In: SIGGRAPH 2000, pp. 103–112 (2000)

29. Kolev, K., Cremers, D.: Integration of multiview stereo and silhouettes via convex functionals
on convex domains. In: Proc. 10th Europ. Conf. on Computer Vision (ECCV), pp. 752–765
(2008)

30. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE Trans. Pattern Anal. Mach. Intell.28(10), 1568–1583 (2006). DOI
http://dx.doi.org/10.1109/TPAMI.2006.200

31. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE
Trans. Pattern Anal. Mach. Intell.26(2), 147–159 (2004)

32. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Intl. Journal of Computer
Vision 38(3), 199–218 (2000)

33. Lempitsky, V., Boykov, Y., Ivanov, D.: Oriented visibilityfor multiview reconstruction. In:
Proc. 9th Europ. Conf. on Computer Vision (ECCV), vol. 3, pp. 226–238 (2006)

34. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., An-
derson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital michelangelo project: 3d
scanning of large statues. In: Proc. of the ACM SIGGRAPH, p. 1522(2000)

35. Lhuillier, M., Quan, L.: A quasi-dense approach to surface reconstruction from uncalibrated
images. IEEE Trans. Pattern Anal. Mach. Intell.27(3), 418–433 (2005)

36. M., G., N., S., B., C., H., H., S., S.: Multi-view stereo forcommunity photo collections. In:
Proceedings of ICCV 2007 (2007)

37. Pollefeys, M., Gool, L.J.V., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.:
Visual modeling with a hand-held camera. International Journalof Computer Vision59(3),
207–232 (2004)

38. Pollefeys, M., Nist́er, D., Frahm, J.M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C.,
Gallup, D., Kim S. J. an d Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q.,
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